miércoles, 25 de noviembre de 2015

APOLONIO DE PERGA

Apolonio de PergeApolonio de Perga o Apolonio de Pérgamo (Griego antiguo: Ἀπολλώνιος) (Pergec. 262 -Alejandríac. 190 a. C.) fue un geómetra griego famoso por su obra Sobre las secciones cónicas. Fue Apolonio quien dio el nombre de elipseparábola e hipérbola, a las figuras que conocemos. Logró solucionar la ecuación general de segundo grado por medio de la geometría cónica.

También se le atribuye la hipótesis de las órbitas excéntricas o teoría de los epiciclos para intentar explicar el movimiento aparente de los planetas y de la velocidad variable de la Luna.
Sus extensos trabajos sobre geometría tratan de las secciones cónicas y de las curvas planas y la cuadratura de sus áreas. Recopiló su obra en ocho libros y fue conocido con el sobrenombre de El Gran Geómetra.  Nació alrededor del 262 A.C. en Perga, Grecia Ionia (Ahora Turquía) y falleció: Alrededor del 190 A.C en Alejandría, Egipto.
Se sabe que estuvo en Alejandría durante los reinados de Ptolomeo Evergetes y Ptolomeo Filopater, a la vez que fue tesorero general de Ptolomeo Filadelfo. Por las fuentes se puede afirmar que era entre veinticinco y cuarenta años más joven que Arquímedes, de allí la estimación de sus años de nacimiento y muerte. Fuera de ello, lo poco que se sabe de su vida es que estudió en Alejandría y en esta ciudad se dedicó a la enseñanza; y que vivió al menos un tiempo
Estudió los megalitos las secciones cónicas utilizando como herramienta las proporciones, relacionando las magnitudes de cada elemento que conforman cada sección cónica en el caso de la parábola, elipse e hipérbola donde utilizó este método para definir las propiedades de cada corte con el cono, como lo demuestra Heath (1896), además propuso y resolvió el problema de hallar las circunferencias tangentes a tres círculos dados, conocido como problema de Apolonio. El problema aparece en su obra, hoy perdida, Las Tangencias o Los Contactos, conocida gracias a Pappus de Alejandría. Respecto a sus obras, se han perdido muchas:
·         Reparto rápido (Ὠκυτόκιον), en el que se enseñaban métodos rápidos de cálculo y se daba una aproximación del número π
·         Secciones en una razón dada (Λόγου ἀποτομή, De Rationis Sectione) , trataba sobre los problemas derivados de trazar una recta que pase por un punto dado y que corte a otras dos rectas dadas en segmentos (medidos desde sendos puntos situados en dichas rectas) que estén en una razón dada (este problema es equivalente a resolver la ecuación)
·         Secciones en un área dada (Χωρίου ἀποτομή, De Spatii Sectione), problema parecido al anterior, pero ahora se pide que los segmentos determinados por las intersecciones formen un rectángulo equivalente a otro (este problema es equivalente a resolver la ecuación)
·         Secciones determinadas (Διωρισμένη τομή, De Sectione Determinata), dados cuatro puntos A, B, C, D, sobre una recta, encontrar un quinto punto P, tal que el rectángulo construido sobre AP y CP esté en una razón dada con el rectángulo construido sobre BP y DP
·         Tangencias (Ἐπαφαί, De Tactionibus), resuelve los problemas de construir una circunferencia tangente a tres elementos cualesquiera elegidos entre un punto, una recta y una circunferencia (este problema se conoce como el problema de Apolonio)
·         Lugares planos (Τόποι ἐπίπεδοι, De Locis Planis), los griegos clasificaban las curvas en tres tipos: lugares planos, eran las rectas y las circunferencias, lugares sólidos eran las secciones cónicas y lugares lineales el resto de las curvas; Inclinaciones, trataba del problema de trazar una circunferencia dada una cuerda de longitud dada pasando por un punto dado.
Sólo dos obras de Apolonio han llegado hasta nuestros días: Secciones en una razón dada (no se conserva el original sino una traducción al árabe) y Las Cónicas (sólo se conserva el original de la mitad de la obra, el resto es una traducción al árabe). Esta última es la obra más importante de Apolonio, es más, junto con los Elementos de Euclides es uno de los libros más importantes de matemáticas.


Las Cónicas está formado por 8 libros. Fue escrito cuando Apolonio estaba en Alejandría pero posteriormente, ya en Pérgamo (hoy Bergama en Turquía), lo mejoró.
·         El libro I: trata de las propiedades fundamentales de estas curvas.
·         El libro II trata de los diámetros conjugados y de las tangentes de estas curvas.
·         El libro III: trata de los tipos de conos.
·         El libro IV: trata de las maneras en que pueden cortarse las secciones de conos.
·         El libro V: estudia segmentos máximos y mínimos trazados respecto a una cónica.
·         El libro VI: trata sobre cónicas semejantes.
·         El libro VII: trata sobre los diámetros conjugados.
·         El libro VIII: se ha perdido, se cree que era un apéndice.
Los métodos que utiliza Apolonio (uso de rectas como sistemas de referencia) son muy parecidos a los utilizados por Descartes en su Geometría y se considera una anticipación de la Geometría analítica actual.
BIBLIOGRAFIA.
Boyer, Carl B. (julio de 1996). «Cap. IX: Apolonio de Perga». Historia de la matemática. Traducido por Mariano Martínez Pérez (5º edición). Alianza Editorial. pp. 189–208. ISBN 978-84-206-8094-1.


EUCLIDES



Euclides (en griego Ευκλείδης, Eukleides) fue un matemático griego, que vivió alrededor del año 300 a.C, ~(325 adC) - (265 adC).
Su vida es poco conocida, salvo que vivió en Alejandría, Egipto. Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450 d. C., es la principal fuente. Existen algunos otros datos poco fiables. Algunos autores árabes afirman que Euclides era hijo de Naucrates y se barajan tres hipótesis:

1.    Euclides fue un personaje histórico que escribió Los Elementos y otras obras atribuidas a él.
2.    Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso escribiendo libros a nombre de Euclides después de su muerte.
3.    Las obras completas de Euclides fueron escritas por un equipo de matemáticos de Alejandría quienes tomaron el nombre Euclides del personaje histórico Euclides de Megara que había vivido unos cien años antes.
Su obra Los elementos, es una de las obras científicas más conocidas del mundo, y era una recopilación del conocimiento impartido en el centro académico. En ella se presenta de manera formal, partiendo únicamente de cinco postulados, el estudio de las propiedades de líneas y planos, círculos y esferas, triángulos y conos, etc.; es decir, de las formas regulares. Probablemente ninguno de los resultados de "Los elementos" haya sido demostrado por primera vez por Euclides pero la organización del material y su exposición, sin duda alguna se deben a él. De hecho hay mucha evidencia de que Euclides usó libros de texto anteriores cuando escribía los elementos ya que presenta un gran número de definiciones que no son usadas, tales como la de un oblongo, un rombo y un romboide. Los teoremas de Euclides son los que generalmente se aprenden en la escuela moderna. Por citar algunos de los más conocidos:
Ø  La suma de los ángulos interiores de cualquier triángulo es 180°.
Ø  En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.
La geometría de Euclides, además de ser un poderoso instrumento de razonamiento deductivo, ha sido extremadamente útil en muchos campos del conocimiento; por ejemplo, en la física, la astronomía, la química y diversas ingenierías. Desde luego, es muy útil en las matemáticas. Inspirados por la armonía de la presentación de Euclides, en el siglo II se formuló la teoría ptolemeica del Universo, según la cual la Tierra es el centro del Universo, y los planetas, la Luna y el Sol dan vueltas a su alrededor en líneas perfectas, o sea círculos y combinaciones de círculos. Sin embargo, las ideas de Euclides constituyen una considerable abstracción de la realidad. Por ejemplo, supone que un punto no tiene tamaño; que una línea es un conjunto de puntos que no tienen ni ancho ni grueso, solamente longitud; que una superficie no tiene grosor, etcétera. En vista de que el punto, de acuerdo con Euclides, no tiene tamaño, se le asigna una dimensión nula o de cero. Una línea tiene solamente longitud, por lo que adquiere una dimensión igual a uno. Una superficie no tiene espesor, no tiene altura, por lo que tiene dimensión dos: ancho y largo. Finalmente, un cuerpo sólido, como un cubo, tiene dimensión tres: largo, ancho y alto. Euclides intentó resumir todo el saber matemático en su libro Los elementos. La geometría de Euclides fue una obra que perduró sin variaciones hasta el siglo XIX.
De los axiomas de partida, solamente el de las paralelas parecía menos evidente. Diversos autores intentaron sin éxito prescindir de dicho axioma intentándolo colegir del resto de axiomas. Ver Geometría euclidiana.
Finalmente, algunos autores crearon nuevos basándose en invalidar o sustituir el axioma de las paralelas, dando origen a las "geometrías no euclidianas". Dichas geometrías tienen como característica principal que al cambiar el axioma de las paralelas los ángulos de un triángulo ya no suman 180 grados.

Aristóteles / Euclides (2000). Sobre las líneas indivisibles; Mecánica / Óptica; Catóptrica; Fenómenos. Madrid: Editorial Gredos.


ARQUÍMEDES




Arquímedes (Siracusa, Sicilia, 287 - 212 a.c.) matemático y geómetra griego considerado el más notable científico y matemático de la antigüedad, es recordado por el Principio de Arquímedes y por sus aportes a la cuadratura del círculo, el estudio de la palanca, el tornillo de Arquímedes, la espiral de Arquímedes y otros aportes a la matemática, la ingeniería y la geometría.
El volumen de la esfera es 2/3 del volumen del cilindro que lo contiene.
Método de aproximación del número π de Arquímedes
Hijo del astrónomo Fidias, quien probablemente le introdujo en las matemáticas, Arquímedes estudió en Alejandría, donde tuvo como maestro a Conón de Samos y entró en contacto con Eratóstenes; a este último dedicó Arquímedes su Método, regresó luego a Siracusa, donde se dedicó de lleno al trabajo científico.
Durante el asedio de Siracusa por el general romano Marcelo, Arquímedes, a pesar de no ostentar cargo oficial alguno se puso a disposición de Hierón, llevando a cabo prodigios en defensa de su ciudad natal, pudiéndose afirmar que él sólo sostuvo la plaza contra el ejército romano. Entre la maquinaria de guerra cuya invención se le atribuye está la catapulta y un sistema de espejos y lentes que incendiaba los barcos enemigos al concentrar los rayos del Sol; según algunos historiadores, era suficiente ver asomar tras las murallas algún soldado con cualquier objeto que despidiera reflejos brillantes para que cundiera la alarma entre el ejército sitiador. Sin embargo, los confiados habitantes de Siracusa, teniéndose a buen recaudo bajo la protección de Arquímedes, descuidaron sus defensas, circunstancia que fue aprovechada por los romanos para entrar al asalto en la ciudad.
A pesar de las órdenes del cónsul Marco Claudio Marcelo de respetar la vida del sabio, durante el asalto un soldado que lo encontró abstraído en la resolución de algún problema, quizá creyendo que los brillantes instrumentos que portaba eran de oro o irritado porque no contestaba a sus preguntas, le atravesó con su espada causándole la muerte. Otros datos dicen que, haciendo operaciones en la playa, unos soldados romanos pisaron sus cálculos, cosa que acabó en discusión y la muerte por espadazo por parte de los romanos. Se dice que sus ultimas palabras fueron "no molestes a mis círculos".
La obra Sobre la esfera y el cilindro, fue su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba.
Aunque probablemente su contribución científica más conocida sea el principio de la hidrostática que lleva su nombre, el Principio de Arquímedes, no fueron menos notables sus disquisiciones acerca de la cuadratura del círculo, el descubrimiento de la relación aproximada entre la circunferencia y su diámetro, relación que se designa hoy día con la letra griega π (pi).

Arquímedes demostró que el lado del hexágono regular inscrito en un círculo es igual al radio de dicho círculo; así como que el lado del cuadrado circunscrito a un círculo es igual al diámetro de dicho círculo. De la primera proposición dedujo que el perímetro del hexágono inscrito era 3 veces el diámetro de la circunferencia, mientras que de la segunda dedujo que el perímetro del cuadrado circunscrito era 4 veces el diámetro de la circunferencia.
Afirmó además que toda línea cerrada envuelta por otra es de menor longitud que ésta, por lo que la circunferencia debía ser mayor que tres diámetros pero menor que cuatro. Por medio de sucesivas inscripciones y circunscripciones de polígonos regulares llegó a determinar el valor aproximado de π como:

Con los rudimentarios medios de los que disponía el sabio griego, el error absoluto que cometió en el cálculo de π resultó ser inferior a una milésima (0,0040 %).
Sin embargo, Arquímedes es más conocido por enunciar el principio que lleva su nombre:
Principio de Arquímedes: todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado.
Cuenta la historia que Hierón, el antes citado monarca de Siracusa, hizo entrega a un platero de la ciudad de ciertas cantidades de oro y plata para el labrado de una corona. Finalizado el trabajo, Hierón, desconfiado de la honradez del artífice y aún reconociendo la calidad artística de la obra, solicitó a Arquímedes que, conservando la corona en su integridad, determinase la ley de los metales con el propósito de comprobar si el artífice la había rebajado, guardándose para sí parte de lo entregado impulsado por la avaricia, la misma, con seguridad, que al propio Popin impelía a realizar semejante comprobación.
Preocupado Arquímedes por el problema, al que no encontraba solución, un buen día al sumergirse en el baño advirtió, como tantas veces con anterioridad, que a causa de la resistencia que el agua opone, el cuerpo parece pesar menos, hasta el punto que en alguna ocasión incluso es sostenido a flote sin sumergirse. Pensando en ello llegó a la conclusión que al entrar su cuerpo en la bañera, ocupaba un lugar que forzosamente dejaba de ser ocupado por el agua, y adivinó que lo que él pesaba de menos era precisamente lo que pesaba el agua que había desalojado.
Dando por resuelto el problema que tanto le había preocupado fue tal su excitación que, desnudo como estaba, saltó de la bañera y se lanzó por las calles de Siracusa al grito de ¡Eureka! ¡Eureka! (¡Lo encontré! ¡Lo encontré!). Procedió entonces Arquímedes a pesar la corona en el aire y en el agua comprobando que en efecto, su densidad no correspondía a la que hubiera resultado de emplear el artífice todo el oro y la plata entregados y determinando, en consecuencia, que éste había estafado al Rey.
No se agota con esta anécdota el talento de Arquímedes que, además, se anticipó al descubrimiento del cálculo integral con sus estudios acerca de las áreas y volúmenes de figuras sólidas curvadas y de áreas de figuras planas; realizó un exhaustivo estudio de la espiral uniforme, conocida como espiral de Arquímedes; determinó el resultado de la serie geométrica de razón 1/4, el más antiguo del que se tiene noticia; creó un sistema numérico posicional para escribir números muy grandes; inventó una máquina para la elevación de agua, el tornillo de Arquímedes, así como la balanza que lleva su nombre; enunció la ley de la palanca lo que le llevó a proferir la célebre frase Dadme un punto de apoyo y moveré el mundo; inventó la polea compuesta, basada en el principio de la palanca, empleándola para mover un gran barco para sorpresa del escéptico Hierón.
Para él, su mayor descubrimiento fue demostrar que el volumen de una esfera es dos tercios del volumen del cilindro que la circunscribe, descubrimiento que pidió que fuera grabado en su tumba, según cuenta Plutarco. Cuarenta años después, el historiador romano Cicerón encontró la tumba gracias al grabado. Actualmente la tumba esta otra vez perdida.
  • Arquímedes fue autor de numerosas obras de variada temática en las que destaca el rigor de sus demostraciones geométricas, razón por la que es considerado el más notable científico y matemático de la Antigüedad. Aunque muchos de sus escritos se perdieron en la destrucción de la Biblioteca de Alejandría, han llegado hasta la actualidad a través de las traducciones latinas y árabes. Aquí se indican algunas de ellas:
  • El arenario. 
  • La medida del círculo.
  • De la esfera y el cilindro.
  • De la cuadratura.
  • De la Parábola.
  • De los esferoides y conoides.
  • De las espirales.
  • Determinación de los centros de gravedad en las líneas y en los planos.
  • Del equilibrio de los cuerpos en los fluidos.
  • El método.
  • De los métodos mecánicos en la geometría (Palimpsesto de Arquímedes)
BIBLIOGRAFÍA.
Arquímedes. Eutocio (2005). Tratados I. Comentarios. Madrid: Editorial Gredos.

ERATÓSTENES




Cirene, 276 adC - Alejandría, 194 adC, fue un célebre matemático, astrónomo y geógrafo griego, de origen probablemente caldeo.
Nacido en Cirene, era hijo de Aglaos, según Suidas, o de Ambrosio según otros escritores. Estudió en Alejandría y, durante algún tiempo, en Atenas y fue discípulo de Aristón de Chíos, de Lisanias de Cirene y del poeta Calímaco y gran amigo de Arquímedes. En 236 adC Ptolomeo Evergetes le llamó a Egipto para que se hiciera cargo de la Biblioteca de Alejandría, puesto que ocupó hasta el fin de sus días, ocurrido durante el gobierno de Ptolomeo Epífanes. Suidas afirma que, desesperado tras perder la vista, se dejó morir de hambre a la edad de ochenta años; sin embargo, Luciano afirma que llegó a la edad de ochenta y dos, y Censorino sostiene que falleció cuando contaba ochenta y uno.
Eratóstenes poseía una gran variedad de conocimientos y aptitudes para el estudio. Astrónomo, poeta, geógrafo y filósofo, fue apellidado Pentathlos, nombre que se reservaba al atleta vencedor en las cinco luchas de los Juegos Olímpicos. Suidas afirma que también era conocido como el segundo Platón, y diversos autores dicen que se le daba el sobrenombre de Beta (por β, la segunda letra del alfabeto griego), porque ocupσ el segundo lugar en todas las ramas de la ciencia que cultivó.
A Eratóstenes se le atribuye la invención, hacia 255 adC, de la esfera armilar que aún se empleaba en el siglo XVII. Aunque debió de usar este instrumento para diversas observaciones astronómicas, sólo queda constancia de la que le condujo a la determinación de la oblicuidad de la eclíptica. Determinó que el intervalo entre los trópicos (el doble de la oblicuidad de la eclíptica) equivalía a los 11/83 de la circunferencia terrestre completa, resultando para dicha oblicuidad 23º 51' 19", cifra que posteriormente adoptaría el astrónomo Claudio Ptolomeo.
Según algunos historiadores, Eratóstenes obtuvo un valor de 24º, debiéndose el refinamiento del resultado hasta 11/83 al propio Ptolomeo. Además, según Plutarco, de sus observaciones astronómicas durante los eclipses dedujo que la distancia al Sol era de 804.000.000 estadios, la distancia a la Luna 780.000 estadios y, según Macrobio, que el diámetro del Sol era 27 veces mayor que el de la Tierra. Realmente el diámetro del Sol es 109 veces el de la Tierra y la distancia a la Luna es casi tres veces la calculada por Eratóstenes, pero el cálculo de la distancia al Sol, admitiendo que el estadio empleado fuera de 185 metros, fue de 148.752.060 km, muy similar a la unidad astronómica actual. A pesar de que se le atribuye frecuentemente la obra Katasterismoi que contiene la nomenclatura de 44 constelaciones y 675 estrellas, los críticos niegan que fuera escrita por él, por lo que usualmente se designa como Pseudo-Eratóstenes a su autor.
En el solsticio de verano los rayos solares inciden perpendicularmente sobre Siena. En Alejandría, más al norte, midiendo la altura de un edificio y la longitud de la sombra que proyecta se puede determinar el ángulo formado con el plano de la eclíptica, en el que se encuentran el Sol y la ciudad de Siena, ángulo que es precisamente la diferencia de latitud entre ambas ciudades. Conocida ésta basta medir el arco de circunferencia y extrapolar el resultado a la circunferencia completa (360º).
Sin embargo, el principal motivo de su celebridad, es sin duda la determinación del tamaño de la Tierra. Para ello inventó y empleó un método trigonométrico además de las nociones de latitud y longitud ya introducidas, al parecer por Dicearco, por lo que bien merece el título de padre de la geodesia. Por referencias obtenidas de un papiro de su biblioteca, sabía que en Siena (hoy Asuán, en Egipto) el día del solsticio de verano los objetos no proyectaban sombra alguna y la luz alumbraba el fondo de los pozos; esto significaba que la ciudad estaba situada justamente sobre la línea del trópico, y su latitud era igual a la de la eclíptica que ya conocía. Eratóstenes, suponiendo que Siena y Alejandría tenían la misma longitud (realmente distan 3º) y que el Sol se encontraba tan alejado de la Tierra que sus rayos podían suponerse paralelos, midió la sombra en Alejandría el mismo día del solsticio de verano al mediodía, demostrando que el cenit de la ciudad distaba 1/50 parte de la circunferencia, es decir, 7º 12' del de Alejandría; según Cleomedes, para el cálculo de dicha cantidad Eratóstenes se sirvió del scaphium o gnomon (Un Proto-cuadrante solar) . Posteriormente, tomó la distancia estimada por las caravanas que comerciaban entre ambas ciudades, aunque bien pudo obtener el dato en la propia Biblioteca de Alejandría, fijándola en 5000 estadios, de donde dedujo que la circunferencia de la Tierra era de 250.000 estadios, resultado que posteriormente elevó hasta 252.000 estadios, de modo que a cada grado correspondieran 700 estadios.
También se afirma que Eratóstenes para calcular la distancia entre las dos ciudades, se valió de un regimiento de soldados que diera pasos de tamaño uniforme y los contara.
Admitiendo que Eratóstenes usó el estadio de 185 m, el error cometido fue de 6.616 kilómetros (alrededor del 17%), sin embargo hay quien defiende que usó el estadio egipcio (300 codos de 52,4 cm), en cuyo caso la circunferencia polar calculada hubiera sido de 39.614,4 km, frente a los 40.008 km considerados en la actualidad, es decir, un error menor del 1%.
Acerca de la exactitud de los cálculos realizados por Eratóstenes se han escrito varios trabajos; en uno de ellos, Dennis Rawlins argumenta que el único dato que Eratóstenes obtuvo directamente fue la inclinación del cenit de Alejandría, con un error de 7' (7 minutos de arco), mientras que el resto, de fuentes
desconocidas, resultan ser de una exactitud notablemente superior. 150 años más tarde, Posidonio rehizo el cálculo de Eratóstenes obteniendo una circunferencia sensiblemente menor, valor que adoptaría Ptolomeo y en el que se basaría Cristóbal Colón para justificar la viabilidad del viaje a las Indias por occidente; quizá con las mediciones de Eratóstenes el viaje no se hubiera llegado a realizar, al menos en aquella época y con aquellos medios, y seguramente sea ése el error que más ha influido en la historia de la humanidad.
El geómetra no se limitó a hacer este cálculo, sino que también llegó a calcular la distancia Tierra-Sol en 804 millones de estadios (139.996.500 km) y la distancia Tierra-Luna en 708.000 estadios (123.280,500 km). Estos errores son admisibles, debido a la carencia de tecnología adecuada y precisa.
Sobre geometría conocemos por el título (pues ningún ejemplar ha sobrevivido hasta nuestros días) una obra suya citada por Pappus como uno de los grandes libros de geometría, De locis ad medietates. Se conserva también una carta a Ptolomeo Evergetes sobre la duplicación del cubo citada por Eutocio en su comentario a la obra de Arquímedes y contribuyó a la aritmética inventando un método conocido como la criba de Eratóstenes para determinar números primos que nos ha llegado a través de la Introducción a la Aritmética de Nicomedes.
También fue importante su contribución a la geografía, palabra de su invención, que antes de Dicearco, Eudoxio y el propio Eratóstenes constituía una amalgama de conocimientos dispersos en numerosas obras de viajeros y cronistas. Eratóstenes supo recoger todos estos tesoros que se encontraban en la Biblioteca de Alejandría, conocimientos procedentes en su mayoría de las conquistas de Alejandro Magno, para componer una obra sistemática titulada Geographika, dividida en tres volúmenes: el primero pasaba revista crítica a sus predecesores y exponía las investigaciones acerca de la forma de la Tierra, que él creía una esfera inmóvil; el segundo contenía lo que hoy se llama geografía física, incluyendo el ensayo acerca del tamaño de la Tierra antes comentado; y el último libro versaba sobre geografía política y en el se incluían las descripciones de las comarcas conocidas tomadas de los relatos de viajeros y geógrafos precedentes. Tal como hiciera Dicearco antes, para situar las ciudades tiró una línea paralela al ecuador desde las columnas de Hércules (estrecho de Gibraltar) hasta el extremo oriental de Asia, dividiendo las tierras habitadas en dos partes, y trazó el meridiano por Alejandría y Siena. La obra, según parece, contenía un mapa en el que se indicaban las ciudades y accidentes geográficos, ríos, montañas, lagos, etc. Esta obra no está exenta de polémica ya que Marciano acusó a Eratóstenes de haber plagiado el tratado de Timóstenes Sobre los puertos, lo que desmiente Estrabón cuando afirma que si bien Eratóstenes concedía gran valor a la obra de Timóstenes, en no pocas ocasiones no compartía sus opiniones. Los fragmentos entonces disponibles fueron recopilados y publicados con el título Eratosthenica por Gottfried Bernhardy (Berlín, 1822) junto con otras obras de Eratóstenes.
La obra poética de Eratóstenes comprende dos obras Erigone, elogiada repetidamente por Longino, y Hermes, la más conocida, poema de asunto astronómico y geográfico que trata de la forma de la Tierra, de su temperatura, de los diferentes climas y de las constelaciones. Escribió varios tratados sobre filosofía moral y se le atribuyen, sin certeza, otras obras filosóficas. Sus producciones históricas estuvieron ligadas íntimamente a las matemáticas, siendo su obra más importante en esta disciplina la Cronografía, obra en la que recoge las fechas de los acontecimientos literarios y políticos más importantes; se cree que Las Olimpiadas, citadas por Diógenes Laercio y Ateneo, formaban parte de la Cronografía. También escribió un tratado Sobre la antigua comedia ática, del que son fragmentos Arjitectonicos ySkenographicos en los que trató de la decoración, el vestuario, la declamación y el argumento de obras de Aristófanes y Cratino entre otros. También estudió la obra de Homero y escribió una biografía sobre la vida del poeta que no ha llegado hasta nuestros días. En la citada Eratosthenica, Bernhardy compiló la lista de todas las obras atribuidas a Eratóstenes, así como los fragmentos de sus escritos entonces conocidos exceptuando Katasterismoi.
Un cráter de la Luna rinde homenaje a Eratóstenes, llevando su nombre. Inventó el primer reloj solar moderno, al que denominó Skaphe.

BIBLIOGRAFÍA.
PaléfatoHeráclitoAnónimo Vaticano, Eratóstenes, Aneo Cornuto (2009). Mitógrafos griegosBiblioteca Clásica Gredos, 376. Editorial Gredos. Madrid.